Copied to
clipboard

G = C2×C523C8order 400 = 24·52

Direct product of C2 and C523C8

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2×C523C8, C102.3C4, Dic5.14D10, Dic5.2Dic5, C103(C5⋊C8), C10⋊(C52C8), (C5×C10)⋊3C8, C5212(C2×C8), (C2×C10).10F5, C10.39(C2×F5), (C2×Dic5).4D5, (C5×Dic5).9C4, C10.5(C2×Dic5), (C2×C10).1Dic5, (C10×Dic5).8C2, C22.2(D5.D5), (C5×Dic5).18C22, C55(C2×C5⋊C8), C52(C2×C52C8), C2.3(C2×D5.D5), (C5×C10).24(C2×C4), SmallGroup(400,146)

Series: Derived Chief Lower central Upper central

C1C52 — C2×C523C8
C1C5C52C5×C10C5×Dic5C523C8 — C2×C523C8
C52 — C2×C523C8
C1C22

Generators and relations for C2×C523C8
 G = < a,b,c,d | a2=b5=c5=d8=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c2 >

4C5
5C4
5C4
4C10
4C10
4C10
5C2×C4
25C8
25C8
4C2×C10
5C20
5C20
25C2×C8
5C2×C20
5C5⋊C8
5C52C8
5C5⋊C8
5C52C8
5C2×C52C8
5C2×C5⋊C8

Smallest permutation representation of C2×C523C8
On 80 points
Generators in S80
(1 64)(2 57)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 40)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(41 66)(42 67)(43 68)(44 69)(45 70)(46 71)(47 72)(48 65)(49 74)(50 75)(51 76)(52 77)(53 78)(54 79)(55 80)(56 73)
(1 67 11 75 25)(2 26 76 12 68)(3 69 13 77 27)(4 28 78 14 70)(5 71 15 79 29)(6 30 80 16 72)(7 65 9 73 31)(8 32 74 10 66)(17 60 46 38 54)(18 55 39 47 61)(19 62 48 40 56)(20 49 33 41 63)(21 64 42 34 50)(22 51 35 43 57)(23 58 44 36 52)(24 53 37 45 59)
(1 75 67 25 11)(2 68 12 76 26)(3 13 27 69 77)(4 28 78 14 70)(5 79 71 29 15)(6 72 16 80 30)(7 9 31 65 73)(8 32 74 10 66)(17 38 60 54 46)(18 61 47 39 55)(19 48 56 62 40)(20 49 33 41 63)(21 34 64 50 42)(22 57 43 35 51)(23 44 52 58 36)(24 53 37 45 59)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,64)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,65)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,73), (1,67,11,75,25)(2,26,76,12,68)(3,69,13,77,27)(4,28,78,14,70)(5,71,15,79,29)(6,30,80,16,72)(7,65,9,73,31)(8,32,74,10,66)(17,60,46,38,54)(18,55,39,47,61)(19,62,48,40,56)(20,49,33,41,63)(21,64,42,34,50)(22,51,35,43,57)(23,58,44,36,52)(24,53,37,45,59), (1,75,67,25,11)(2,68,12,76,26)(3,13,27,69,77)(4,28,78,14,70)(5,79,71,29,15)(6,72,16,80,30)(7,9,31,65,73)(8,32,74,10,66)(17,38,60,54,46)(18,61,47,39,55)(19,48,56,62,40)(20,49,33,41,63)(21,34,64,50,42)(22,57,43,35,51)(23,44,52,58,36)(24,53,37,45,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (1,64)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,65)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,73), (1,67,11,75,25)(2,26,76,12,68)(3,69,13,77,27)(4,28,78,14,70)(5,71,15,79,29)(6,30,80,16,72)(7,65,9,73,31)(8,32,74,10,66)(17,60,46,38,54)(18,55,39,47,61)(19,62,48,40,56)(20,49,33,41,63)(21,64,42,34,50)(22,51,35,43,57)(23,58,44,36,52)(24,53,37,45,59), (1,75,67,25,11)(2,68,12,76,26)(3,13,27,69,77)(4,28,78,14,70)(5,79,71,29,15)(6,72,16,80,30)(7,9,31,65,73)(8,32,74,10,66)(17,38,60,54,46)(18,61,47,39,55)(19,48,56,62,40)(20,49,33,41,63)(21,34,64,50,42)(22,57,43,35,51)(23,44,52,58,36)(24,53,37,45,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,64),(2,57),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,40),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(41,66),(42,67),(43,68),(44,69),(45,70),(46,71),(47,72),(48,65),(49,74),(50,75),(51,76),(52,77),(53,78),(54,79),(55,80),(56,73)], [(1,67,11,75,25),(2,26,76,12,68),(3,69,13,77,27),(4,28,78,14,70),(5,71,15,79,29),(6,30,80,16,72),(7,65,9,73,31),(8,32,74,10,66),(17,60,46,38,54),(18,55,39,47,61),(19,62,48,40,56),(20,49,33,41,63),(21,64,42,34,50),(22,51,35,43,57),(23,58,44,36,52),(24,53,37,45,59)], [(1,75,67,25,11),(2,68,12,76,26),(3,13,27,69,77),(4,28,78,14,70),(5,79,71,29,15),(6,72,16,80,30),(7,9,31,65,73),(8,32,74,10,66),(17,38,60,54,46),(18,61,47,39,55),(19,48,56,62,40),(20,49,33,41,63),(21,34,64,50,42),(22,57,43,35,51),(23,44,52,58,36),(24,53,37,45,59)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])

52 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B5C···5G8A···8H10A···10F10G···10U20A···20H
order12224444555···58···810···1010···1020···20
size11115555224···425···252···24···410···10

52 irreducible representations

dim11111122222444444
type++++-+-+-+
imageC1C2C2C4C4C8D5Dic5D10Dic5C52C8F5C5⋊C8C2×F5D5.D5C523C8C2×D5.D5
kernelC2×C523C8C523C8C10×Dic5C5×Dic5C102C5×C10C2×Dic5Dic5Dic5C2×C10C10C2×C10C10C10C22C2C2
# reps12122822228121484

Matrix representation of C2×C523C8 in GL6(𝔽41)

100000
010000
0040000
0004000
0000400
0000040
,
3560000
35400000
0010000
0001000
002932370
003340037
,
100000
010000
0016000
0001800
001821370
002017010
,
0380000
3800000
00736150
00324015
00321345
001226937

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[35,35,0,0,0,0,6,40,0,0,0,0,0,0,10,0,29,33,0,0,0,10,32,40,0,0,0,0,37,0,0,0,0,0,0,37],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,18,20,0,0,0,18,21,17,0,0,0,0,37,0,0,0,0,0,0,10],[0,38,0,0,0,0,38,0,0,0,0,0,0,0,7,32,32,12,0,0,36,4,1,26,0,0,15,0,34,9,0,0,0,15,5,37] >;

C2×C523C8 in GAP, Magma, Sage, TeX

C_2\times C_5^2\rtimes_3C_8
% in TeX

G:=Group("C2xC5^2:3C8");
// GroupNames label

G:=SmallGroup(400,146);
// by ID

G=gap.SmallGroup(400,146);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,50,1924,8645,2897]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^5=c^5=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^2>;
// generators/relations

Export

Subgroup lattice of C2×C523C8 in TeX

׿
×
𝔽